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The shoot meristem is a proliferating, changing cell population
yet displays a stable organization. Recent studies have
addressed how signaling processes coordinate the behaviour
of shoot meristem cells.
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Abbreviations
AG AGAMOUS
ANT AINTEGUMENTA
CLV CLAVATA
CZ central zone
LFY LEAFY
OC organizing center
NPA N-(1-naphthyl)phtalamic acid
PID PINOID
pin1 pin-formed1
pol poltergeist
PZ peripheral zone
RZ rib zone
SAM shoot apical meristem
STM SHOOTMERISTEMLESS
WUS WUSCHEL

Introduction
The shoot apical meristem (SAM) comprises three
domains that fulfill distinct functions: the central zone
(CZ) harbors the stem cells, which continually produce
new cells, whereas initiation of lateral organs and central
stem tissue occurs in the surrounding peripheral zone (PZ)
and underlying rib zone (RZ), respectively (Figure 1; [1,2]).

The outer cells of the SAM always divide perpendicularly
to the surface, giving rise to clonally distinct cell layers.
In most angiosperms, the outermost L1 layer will form
epidermis, and an underlying L2 layer will produce the
subepidermal tissues of the stem and lateral organs.
Underneath, the L3 cells divide in all planes and form the
pith of the stem and interior tissues of organs. Despite
this apparently pervasive clonal separation in wild-type
development, there is ample evidence from chimeric plants
to show that cells develop according to their actual position
and not their origin. For example, an L1 cell displaced into
the subepidermal layer will develop into a subepidermal cell
type [3]. In addition, the growth and differentiation of all
three layers must be coordinated to maintain meristem shape
and produce normal organs. Together, these data imply that
meristem cells exchange signals to coordinate their behavior.

In this review, we discuss papers from the past year that
provide new insights into the cell–cell signaling mechanisms

that direct the two meristem functions: stem cell homeostasis
and organ initiation. 

Regulation of stem cells
Clonal analyses have demonstrated that all of the
postembryonic structures of the plant shoot are derived
from about three stem cells in every layer of the meristem
[3]. We use the term stem cells in the operational sense
that they give rise to both daughters that renew the stem
cell pool and that differentiate into a variety of cell types.
The stem cells cannot be distinguished histologically but,
for geometric reasons, are thought to be located at the very
tip of the CZ. This position roughly coincides with the
expression domain of the CLAVATA (CLV)3 gene, which has
been used as a stem-cell marker (Figure 1a,b; [4]).

The stem cells can be replaced by neighboring cells [5],
suggesting that they are not permanent but, rather, are
specified as stem cells as a result of their position in a niche
where appropriate signals are provided from the surrounding
cells. This situation is similar to stem cell regulation in the
root meristem or in animals [6,7]. It should be noted that
daughters of the apical stem cells can act as transient stem
cells, which give rise to a more restricted part of the shoot,
until they are displaced by a division of a more apical cell
and undergo differentiation [3].

Setting up a niche for stem cells
Mutations in the homeobox gene WUSCHEL (WUS) result
in a mis-specification of stem cells [8], whereas overexpression
of WUS can repress organ formation and induce expression
of the stem-cell marker CLV3, demonstrating that WUS is
necessary and sufficient to induce stem cell identity [9••].
WUS is not expressed, however, within the stem cells but
in an underlying group of cells, termed the organizing center
(OC) (Figure 1a,b; [10]). This has led to the model in
which WUS activity in the OC promotes a signal that specifies
the overlying neighbors as stem cells. 

A question arises from this model: why are only the over-
lying neighbors induced to be stem cells? One possibility
is that only these cells are competent to respond to the
WUS-dependent signal. Either additional factors could be
required to enable cells to answer to WUS or differentiation
signals could suppress the response to WUS outside the
stem-cell region. The idea of a restriction on cell compe-
tence is supported by observations that ubiquitously
expressed WUS induces CLV3 expression only in some cell
types (M Lenhard, T Laux, unpublished data). 

An alternative model is that the WUS-dependent signal
may be communicated via plasmodesmata in one direction
only. Injection studies and microscopic analysis have revealed
that cell–cell signaling may be restricted to regions of the

Cell–cell signaling in the shoot meristem
Achim Haecker and Thomas Laux*



shoot meristem by regulating the plasmodesmal coupling
of meristem cells [11,12]. At least for the epidermal
cells, facilitated transport was observed in the CZ domain
[11,12]. Thus, it is conceivable that the movement of the
WUS-dependent signal is directed by preferential coupling
between stem cells and the OC.

The reply from the stem cells
The function of WUS is counteracted by the CLV signaling
pathway [8,9••]. Mutations in any one of the three CLAVATA
genes (CLV1, CLV2 and CLV3) lead to a progressive
enlargement of the stem-cell population, and genetic data
suggest that all three genes act in the same pathway [13].
Several results suggest that one of the main targets of the
CLV pathway is WUS. The effects of wus mutations are
epistatic to clv1, clv2 and clv3 phenotypes; the WUS
expression domain is enlarged in clv mutants, indicating
that the CLV pathway suppresses WUS at the transcript
level; and enlarging the WUS expression domain in wild-type
plants can phenocopy the clv mutant defect [9••]. Genetic
analysis of the poltergeist (pol) mutant suggests that POL
acts downstream of CLV signaling and may have functions
that overlap with those of WUS [14••]. In double mutants,
pol mutations suppress the clv phenotype whereas pol alone
has no effect, and pol and wus show dominant interactions. 

CLV1 encodes a putative receptor kinase with an extracel-
lular leucine-rich repeat receptor domain and an
intracellular serine/threonine kinase region. It is
expressed mainly in the corpus of the SAM, but possibly
also in the L2 (Figure 1b; [15]). CLV2 encodes a protein
with an extracellular domain similar to that of CLV1 but
that lacks the kinase domain and probably forms a
membrane-associated complex with CLV1 [16]. CLV3,
which as mentioned above is expressed in the apical
stem cells, encodes a small polypeptide with a putative

secretory signal peptide [4] that appears to be present in planta
as a small soluble complex [17••].

Does CLV3 act as a signal in the shoot meristem? There is
convincing biochemical evidence that CLV3 represents a
ligand for the CLV1 receptor kinase: the formation of
the apparently active CLV1 complex of 450 kiloDaltons
is dependent on the presence of CLV3 [18]. CLV3 co-
immunoprecipitates with CLV1 and this binding requires
an active intracellular kinase domain, suggesting that kinase
activity stabilizes the receptor–ligand interaction [17••].

In addition, CLV3 specifically binds to intact yeast cells
expressing CLV1 and CLV2, suggesting that CLV3 may
function as an extracellular signal that binds to
CLV1–CLV2 at the cell surface. It should be noted,
however, that other scenarios are also possible: as WUS is
repressed by the CLV pathway in the L3 stem cells, in
which CLV1 and CLV3 expression overlap (Figure 1b;
[4,9••,15]), the possibility that the CLV1–CLV3 interaction
is intracellular cannot be excluded.

The above results suggest the following model for the
regulation of stem-cell homeostasis (see also ‘Update’).
Stem cells are specified by, as yet unknown, WUS-dependent
signals from the underlying OC and in turn signal back via
the CLV3 molecule, delimiting the OC by repression of
WUS. This negative-feedback loop enables the stem cells
to autoregulate their number indirectly through size control
over the OC (Figure 2a). 

Localized CLV3 signal
Transgenic plants that express CLV3 throughout the SAM
mimic the wus mutant phenotype [19••], indicating that
CLV3 activity is sufficient to repress WUS. This implies
that the availability of CLV3 function is the rate-limiting
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Organization of the shoot apical meristem. (a) Schematic view of SAM
domains. The CZ (blue) contains slowly dividing cells that stain weakly
with cytoplasmic dyes. The apical stem cells (red) form part of the CZ.
Cells in the PZ (green), where initiation of organ primordia takes place,

divide more rapidly and stain more strongly. In the RZ (yellow),
differentiation of central pith tissue is initiated. Redrawn after [37].
(b) Outline of the central part of (a), showing the approximate mRNA
expression domains of CLV1, CLV3 and WUS.



factor in the repression of WUS; however, assuming that
CLV3 can travel within the meristem, why is WUS
repressed only in the cells above and possibly lateral to the
OC, but not in the OC itself? There must be a mechanism
that prevents CLV3 from being active in OC cells. One
conceivable model is that all CLV3 protein produced in the
apical stem cells is bound — for example in the third cell
layer — preventing it from entering the OC cells under-
neath (Figure 2b). Consistent with this idea, 75% of the total
amount of CLV3 protein in cauliflower meristem extracts
was found to be associated with CLV1 [17••]. Doubling the
number of CLV3 gene copies was not sufficient to overcome
this barrier and repress WUS in the OC [19••], suggesting
that, in accordance with the model, the OC is safely protected
from CLV3 signaling by a large excess of binding sites. 

Anchoring the organizing center
Although the shoot meristem consists of a population of
dividing cells, expression domains remain stable at the same
position relative to the organization of the shoot apex. In the
case of the OC, periclinal divisions of the overlying L3 stem
cells result in a flow of cells through the OC: cells that enter
the OC from above activate WUS expression, whereas cells
that leave the OC towards the RZ switch it off.

This raises the question of how the organizing center is
maintained at a given distance from the shoot summit,
underneath the third cell layer. One possibility would be
that the stem cells not only send a repressive signal but also
a positive signal that induces WUS expression in the OC.
Although the strength of the repressive signal in this model
would drop sharply because of CLV3 sequestration at the
third cell layer, the activating signal would reach the OC. 

An alternative, though not mutually exclusive, scenario is
that the position of the OC depends on signals from under-
lying or lateral cells. This view is consistent with findings
that meristem maintenance requires the presence of young
leaf primordia and is influenced by genes expressed in the
leaves and the vasculature [20–22]. 

Organ initiation
Cells that leave the CZ lose stem cell identity and initiate
differentiation and organ formation. How are the cells
instructed to do so? Consistent with the niche concept, loss
of stem cell identity could simply result from the cell leaving
the range of WUS signaling; however, absence of WUS
signaling is not sufficient to initiate organ formation, as the
central cells in wus mutant apices do not do so. Given the
continuity of tissues, it is conceivable that differentiated
cells instruct the new cells. Such a mechanism is indicated by
experiments in the root; when undifferentiated root cells
were disconnected from older tissue by cell ablation, they lost
their ability to differentiate according to their position [23]. 

Several recent studies have addressed the role of signaling
in organ initiation in the SAM. Reinhardt and coworkers
[24••] exposed excised tomato apices to the auxin transport

inhibitor NPA (N-[1-naphthyl]phtalamic acid). Although
the histological organization of the SAM remained 
unaffected, organ formation was blocked, indicating a
requirement for auxin transport. This phenotype is remi-
niscent of the pin-formed1 (pin1) mutant, in which polar
auxin transport is reduced by about 90% as a result of a
defect in the putative auxin efflux carrier PIN1 [25,26].

As the site of auxin production in the apex is unknown, the
phenotype of NPA-treated or pin1 shoots could be caused
by an increased or decreased concentration of auxin. To
address this question, auxin was locally applied at the
periphery of naked NPA-treated and pin1 mutant apices,
and in both cases induced organ formation at the corre-
sponding sites. The number of cells that were incorporated
into an organ primordium increased with the amount of auxin
applied; however, only the PZ was competent to respond
to auxin, whereas the CZ of the meristem was not. Together,
these experiments indicate that local maxima of auxin are
sufficient to induce organ initiation in the PZ and that
polar auxin transport is required to establish such maxima. 

This model is supported by an analysis of marker gene
expression in the pin1 mutant [27••]. In wild-type plants,
SHOOTMERISTEMLESS (STM) is expressed throughout
the PZ but is absent from sites of incipient organ primordia
[28]. In contrast, AINTEGUMENTA (ANT) and LEAFY
(LFY) are expressed in incipient and outgrowing organ pri-
mordia in a pattern that is complementary to that of STM
expression [29,30]. In the pin1 mutant, STM expression was
completely absent in the PZ, whereas ANT and LFY were
expressed throughout the PZ. PZ cells showed a mixed
identity, however: the same PZ cells that expressed LFY
and ANT also expressed CUP-SHAPED COTYLEDON2,
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Figure 2

Signaling between stem cells and the organizing center (OC).
(a) WUS expression in the OC promotes a yet unidentified signal that
specifies the overlying cells as stem cells. The stem cells signal back
via CLV3 and restrict the size of the OC. (b) Model for the protection
of the OC from CLV3 signaling. Binding of CLV3 (red circles) to the
CLV1 complex (blue crescents) results in repression of WUS in L3. An
excess of CLV1 receptor complex prevents CLV3 from entering the
underlying OC cells, allowing WUS to be expressed there.
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which in wild-type plants marks the boundary of organs
[31]. This indicates that PIN1 is required to separate these
expression domains — that is, to delimit organ anlagen.
Target genes of LFY were not expressed in pin1 mutants,
suggesting that the cells in the periphery had initiated
organs but were blocked soon thereafter. Whether this
block is a consequence of the mixed cell identity or
whether PIN1 is directly required for progression of organ
development remains to be determined.

Mutations in PINOID (PID), which encodes a serine/
threonine kinase, also result in naked shoot apices [32••];
however, overexpression analysis suggests that PID
antagonizes auxin signaling. As PID is expressed in young
organ anlagen on the flanks of the SAM, these results
suggest that dampening of auxin signaling is also required
for organ formation.

Together, these findings indicate that polar auxin transport
is required for the organization of the peripheral zone into
primordia and non-primordial cells and, furthermore, that
auxin is necessary for organ outgrowth. What is the source
of auxin in the shoot apex and by which method is it trans-
ported? If NPA-treated shoots are allowed to recover in the
absence of NPA and auxin, they first form leaves at random
positions but, later, phyllotaxis became normal, confirming
that wild-type phyllotaxis requires signals from existing
organs. It is questionable, however, whether this signal is auxin
as organ formation is repressed in the vicinity of existing
organs. This signal could, therefore, antagonize auxin activity. 

Conclusions
Genetic and molecular analyses have revealed a complex
network of signaling between cells within the SAM and
between the SAM and other parts of the plant.

What are the roads along which the signals travel? Smaller
secreted molecules, such as CLV3, could travel through
the extracellular space and bind to receptors at the cell
surface. Larger molecules, however, may have to use plas-
modesmata in order to move from cell to cell [33]. For
example, the transcription factor LFY was shown to be
present in cells in which the LFY gene was not expressed,
indicating that LFY protein itself can travel [34••].
Recently, a transient increase in plasmodesmal coupling
between all meristem cells has been observed immediately
after floral induction [35••]. This increase was due to
establishment of secondary plasmodesmata and occurs
independently of cell division. What is the significance of
a varying density of cell–cell connections? A conceivable
model, taking into account the growing number of reports
of non-cell-autonomous functions of floral regulators, holds
that during floral induction the roads between meristem
cells are opened briefly to allow a rapid and co-ordinated
response of all cells to the floral stimulus [36••]. In this
view, the regulation of cell–cell coupling can provide a
means with which to spatially and temporally modulate
cell–cell communication.

Update
In contrast to the Arabidopsis shoot meristem, floral meris-
tems are determinate and produce only a limited number
of organs. Recent work suggests that floral meristem deter-
minacy is regulated by a negative feedback mechanism, in
which WUS activates expression of the AGAMOUS (AG)
gene, which in turn represses WUS and thus terminates
stem-cell maintenance [38••,39••].

In vitro WUS protein binds to consensus homeodomain
target sites within the regulatory region of the AG gene.
These sites are necessary for expression of an AG reporter
gene construct in planta [38••]. However, as the AG gene is
still active in wus mutants [8], other yet unknown proteins
could also bind to the target sites or other cis-regulatory
elements could play a role. The activation of AG expres-
sion by WUS, and thus stem-cell termination, is restricted
to determinate floral meristems, apparently because of the
requirement for additional flower-specific factors. As
endogenous WUS does not appear to activate AG in lfy
mutants, one of these factors could be the floral meristem
identity gene LFY [39••]. However, overexpressed WUS
can still activate the AG promoter in the absence of LFY
[38••], suggesting that this requirement is not absolute.
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